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ABSTRACT

Iodine-mediated, oxidative desulfurization promoted cyclization of N-2-pyridylmethyl thioamides serves as an efficient and versatile method
for the preparation of 2-azaindolizines (imidazo[1,5-a]pyridines) and rare 2-azaindolizine sulfur-bridged dimers. The 2-azaindolizines prepared
in this manner are readily converted to a variety of fluorescent compounds by using transition-metal-catalyzed cross-coupling reactions.

Bicyclic heteroaromatics, in which the nitrogen atom is lo-
cated at ring-fusion positions, comprise an important family
of compounds owing to their unique photophysical and biolog-
ical properties.1 Recently, increasing attention has been given
to members of this family that contain the imidazo[1,5-a]-
pyridine (2-azaindolizine) skeleton.2-5 Potential applications
of these substances have been actively probed in the context
of organic light-emitting diodes (OLED)2 and organic thin-

layer field effect transistors (FET).3 In addition, 2-azain-
dolizines have been investigated as pharmaceuticals (eg.,
HIV-protease inhibitors)4 and as precursors of N-heterocyclic
carbenes5 whose synthesis and applications are now under
active exploration. Despite this high interest, existing syn-
thetic routes which target 2-azaindolizines, relying mainly
on traditional Vilsmeier-type cyclizations ofN-2-pyridylm-
ethyl amides, are only modestly efficient.6 Consequently, an
efficient synthetic approach to a wide variety of 2-azain-
dolizines is in strong demand.7,8 Methods that enable prep-
aration of 2-azaindolizines, which contain functional groups
that can be transformed toπ-conjugated systems, would be
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particularly attractive because they can be used to generate
substances with fine-tuned photophysical properties.

Below, we describe a new procedure to access 2-azain-
dolizines that relies on iodine-mediated, oxidative desulfu-
rization promoted cyclizations ofN-2-pyridylmethyl thioa-
mides.9,10Also, efforts leading to the introduction of aromatic
substituents into the 2-azaindolizine product by using a
transition-metal-catalyzed cross-coupling reaction is de-
scribed. Finally, the photophysical properties of the derived
2-azaindolizines are reported.

In initial studies exploring the iodine-mediated, oxidative
desulfurization promoted cyclization process,N-2-pyridyl-
methyl-2-pyridinecarbothioamide (1a) was reacted with
iodine (3 equiv) in the presence of pyridine (3 equiv) in THF
for 15 min (entry 1 in Table 1). The reaction generated the

2-azaindolizine2a in 89% yield along with a rare compound,
the sulfur-bridged 2-azaindolizine dimer3a11 in 7% yield.
The structures2a and3a were confirmed by X-ray crystal-
lographic analysis (Figure 1).12 A wide range of thioamides

1 participate in this cyclization reaction (entries 2-10),
efficiently yielding the corresponding 2-azaindolizines2
independent of the electronic nature of substituents on the
aromatic rings. Moreover, the reactions can be carried out
on a multigram scale with the same efficiencies observed in
corresponding small-scale reactions (entries 2, 4, 5, 7, and
9). It is noteworthy that this process is used to generate the
bromo-2-azaindolizine2e, a possible precursor for transition-
metal-catalyzed cross-coupling reactions.13 Heteroaromatic
substituents in the starting material (e.g.,1a and1i) do not
alter the efficiencies of the reaction (entries 1 and 9), but
the alkyl-substituted substrate1j reacts to give the 2-azain-
dolizine 2j in slightly lower yield (entry 10). In this case,
decomposition of the product2j was observed during
purification.

Attention was given to the formation of the sulfur-bridged
dimer 3. Reaction of1a with iodine and pyridine in THF
for 21 h leads to formation of 2-azaindolizine2a in 57%
and the sulfur-bridged dimer3a in 32% yield (entry 1 in
Table 2). Reaction of these substrates in DMF affords3a in
an elevated 45% yield (entry 2). Likewise, other thioamides
1b-d are converted to analogous sulfur-bridged dimers3
(entries 3-5). Interestingly, reaction of thioamide1c, which
contains an aromatic OMe substituent, produces3c in 66%
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P(O)Cl3 did not give the desired 3-(4-bromophenyl)-2-azaindolizine under
the traditional Vilsmeier conditions6 (in toluene under reflux for 4 h), but
instead, insoluble material was precipitated.

Table 1. Iodine-Mediated Oxidative Desulfurization Promoted
Cyclization of Thioamides1 Leading to 2-Azaindolizines2a

a Iodine and pyridine were added to a 0.5 M THF solution of thioamides
1 at 0°C, and then the reaction mixture was stirred at rt for 15 min.b Isolated
yields. c Sulfur-bridged 2-azaindolizine dimer3a was also isolated in 7%
yield. d 10 mmol scale: 80% yield.

Figure 1. ORTEP plots of the molecular structures of 2-azain-
dolizine 2a and sulfur-bridged 2-azaindolizine dimer3a (thermal
ellipsoids drawn at the 50% probability level). Hydrogen atoms
have been omitted for clarity.
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yield, whereas reaction of the CF3-substituted thioamide1d
gives3d in lower yield (entry 5).

A plausible mechanism for the novel cyclization reaction
leading to 2-azaindolizines is displayed in Scheme 1. In the

pathway, deprotonation of theN-2-pyridylmethyl thioamide
1 by pyridine, followed by iodination at sulfur, gives
intermediateI. Subsequent iodination, again at sulfur, takes
place to form the electrophilic intermediateII, which
undergoes intramolecular substitution by the pyridine nitro-
gen at the imino carbon to formIII. Finally, aromatization
of III by deprotonation forms 2-azaindolizines2.14 In this
mechanistic route, the sulfur atom of the starting thioamides
1 is formally oxidized to form a sulfur (+II) species
(presumably sulfur diiodide).14b Electrophilic substitution
reaction by sulfur diiodide on the initially formed 2-azain-
dolizine2 yields intermediateIV , which serves as a precursor
to the sulfur-bridged dimer3.15 This proposal is in accord
with the observation that thioamides bearing an electron-
donating group give higher yields of3.

Suzuki-Miyaura coupling reactions of the bromine-
substituted 2-azaindolizine2e with arylboronic acids were

examined to extend theπ-conjugated system of 2-azain-
dolizines (Scheme 2).16 These reactions take place with high

efficiency under the general Suzuki-Miyaura coupling
conditions. For example, reaction of2e and phenylboronic
acid in the presence of tetrakistriphenylphosphine palladium-
(0) and cesium carbonate in aqueous DMF efficiently
provides the phenylated product, 3-biphenyl-2-azaindolizine
5a, in 81% yield. 4-Dimethylaminophenylboronic acid4b
and fluorene diboronic acid4calso react to generate coupling
products5b and5c in high yields. Although highly electron-
deficient 4-nitrophenylboronic acid4d does not participate
in a coupling reaction with2eunder the typical conditions,
the reaction proceeds smoothly when a combination of Pd-
(dba)2, tri-tert-butyl phosphine, and KOH in DMF are used.

Photophysical studies reveal thatπ-conjugating substitu-
ents have a great influence on absorption and emission
maxima (λabsandλem) and fluorescent quantum yields of the
2-azaindolizines (Table 3).17,18 The λabs values of 2-azain-
dolizines bearing electron-donating groups on the phenyl
ring, such as2c (306 nm) and3c (312 nm), are blue-shifted,
and those with electron-withdrawing phenyl substitution,
such as2d (340 nm) and3d (342 nm), are red-shifted,
compared to the unsubstituted analogues,2b (317 nm) and
3b (322 nm) (entries 2-4 and 6-8). A linear relationship is
observed between theλabsvalues of2 and3 and the Hammett
constants of the phenyl substituents in the expressionsλabs

of 2 ) 315 + 49.51σ (R2 ) 0.95) andλabs of 3 ) 322 +
37.04σ(R2 ) 1.00).19 However, theλem values of2b-d and
3b-d are less affected by phenyl substituents (entries 2-4
and 6-8). Theλem values of3b,c (512-518 nm, entries
6-8), where a sulfur atom is present at the 2-azaindolizine

(14) For related oxidative desulfurization reactions, such as (a) glycosi-
dation via oxidative activation of a thioether, see: Nicolaou, K. C.; Mitchell,
H. J. Angew. Chem., Int. Ed.2001,40, 1576. (b) For oxidative desulfur-
ization-fluorination, see: Kanie, K.; Mizuno, K.; Kuroboshi, M.; Hiyama,
T. Bull. Chem. Soc. Jpn.1998,71, 1973. Also see review: (c) Shimizu,
M.; Hiyama, T.Angew. Chem., Int. Ed.2005,44, 214.

(15) The reaction of 2-azaindolizine2b and SCl2 provides3b: see ref
11.

(16) For a recent review of the Suzuki-Miyaura coupling reaction, see:
Christmann, U.; Vilar, R.Angew. Chem., Int. Ed.2005, 44, 366 and
references cited therein.

(17) See Supporting Information for full detailed analytical data (Table
S1).

(18) Demas, J. N.; Crosby, G. A.J. Phys. Chem.1971,75, 991.
(19) See Supporting Information (Figures S1 and S2).

Table 2. Iodine-Mediated Desulfurization-Cyclization of1
Leading to Sulfur-Bridged 2-Azaindolizine Dimer3a

yield(%)

entry substrate solvent 2 3

1 1a THF 57 32
2 1a DMF 29 45
3 1b DMF 47 31
4 1c DMF 26 66
5 1d DMF 51 35

a Reactions were carried out at rt for 21 h.

Scheme 1. Plausible Mechanism for Formation of
2-Azaindolizines1 and Sulfur-Bridged Dimers3

Scheme 2. Suzuki-Miyaura Coupling Reactions of2e
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1-position, are significantly red-shifted relative to those of
2b-d (459-469 nm, entries 2-4). Furthermore, theλem

values of2a (425 nm, entry 1) and3a (480 nm, entry 5),
each of which bears a 2-pyridyl group at C-3, are consider-
ably blue-shifted in contrast to those of2b (461 nm) and3b
(513 nm). Interestingly, in spite of the usual large red-shift
of its λabs, 5a containing a C-3 phenyl-extendedπ-system
has aλem value (415 nm, entry 9) that is significantly blue-
shifted in comparison to2b. Moreover, the fluorescence
quantum yields (ΦF) are dramatically enhanced when the
electron-donating 4-dimethylaminophenyl group is present

at C-3 (e.g.,5b ΦF ) 0.32, entry 10), contrasted with2b
(ΦF ) 0.07) and5a (ΦF ) 0.07). The fluorene-substituted
analogue5c has both the strongest UV absorption and the
highest fluorescence quantum yield (logε ) 4.87,ΦF ) 0.22,
entry 11) in this series and shows a strong blue emission
(λem ) 447 nm).

In summary, we have developed an efficient synthetic
method to prepare functionalized 2-azaindolizines from
readily available thioamides. In addition, the Suzuki-
Miyaura coupling based protocol was developed to further
extendπ-conjugation in the 2-azaindolizines. This enabled
preparation of 2-azaindolizines that have high fluorescence
emission efficiencies. The advantage of this strategy is that
it can be used to generate 2-azaindolizines with finely tuned
absorption and emission properties for applications in
advanced functional organic materials and medicinal chem-
istry. Further studies aimed at introducing novel functionality
into the 2-azaindolizine skeleton and at theoretically probing
the emission properties of these substances are underway.
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Table 3. Selected Photophysical Properties of the Conjugated
2-Azaindolizines

UV/visa fluorescencea

entry compound λmax (nm) log ε λmax (nm) ΦF
b

1 2a 348 4.04 425 0.02
2 2b 317 4.25 461 0.07
3 2c 306 4.05 469 0.05
4 2d 340 4.12 459 0.04
5 3a 273 4.27 480 0.02

357 4.56
6 3b 277 4.21 513 0.02

322 4.28
7 3c 276 4.34 518 0.03

312 4.35
8 3d 276 4.22 512 0.03

342 4.41
9 5a 334 4.23 415 0.07

10 5b 348 4.41 488 0.32
11 5c 357 4.87 447 0.22

a Measured in CHCl3. b Quantum yields (ΦF) were determined with
reference to quinine sulfate in 0.1 M aqueous sulfuric acid (excited at 350
nm).18
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